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Abstract— The randomized Kaczmarz (RK) method is
an iterative method for approximating the least-squares
solution of linear systems of equations. The RK method
requires sequential updates, making parallel computation
difficult. Here, we study a parallel version of RK where a
weighted average of independent updates is used. We ana-
lyze the convergence of RK with averaging and demonstrate
its performance empirically. We show that as the number
of threads increases, the rate of convergence improves and
the convergence horizon for inconsistent systems decreases.

I. INTRODUCTION

Randomized Kaczmarz (RK) is a popular iterative
method for approximating the least-squares solution of
large, overdetermined linear systems [Kac37], [SV09].
At each iteration, a row is chosen with some probability
and the current approximation is projected onto the
solution space of that row.

In order to take advantage of parallel computation and
speed up the convergence of RK, we consider a simple
extension of the RK method, where at each iteration
multiple independent updates are computed in parallel
and a weighted average of the updates is used. We
analyze the convergence rate of this RK with averaging,
and show that increasing the number of rows used in
each update improves both the convergence rate and
convergence horizon.

A. Problem Statement

Given A ∈ Rm×n and b ∈ Rm, we aim to solve the
linear system of equations

Ax = b (1)

which is overdetermined, typically with m � n. For
simplicity, we assume throughout that A has full rank
so that the solution is unique when it exists. However,
this assumption can be relaxed by choosing the solution
with least norm when multiple solutions exist [ZF13].

When a solution to Equation (1) exists, we denote
the solution x? and refer to the problem as consistent.
Otherwise, the problem is inconsistent, and x? instead

denotes the least-squares solution:

x? = argmin
x∈Rn

1

2
‖b−Ax‖22. (2)

The least-squares solution can be equivalently written
as x? = A†b, where A† is the Moore-Penrose pseu-
doinverse of A. We denote the least-squares residual as
r? := b−Ax?, which is zero for consistent systems.

B. Algorithms

Let xk be the kth iterate, ek := xk − x? be the error
of the kth iterate, and rk := b−Axk be the residual of
the kth iterate. We use Ai to denote the ith row of A
and ‖·‖ := ‖·‖2. The relaxed RK update is given by

xk+1 = xk − λk,ik
Aikx

k − bik
‖Aik‖2

A>ik , (3)

where ik is sampled from some fixed distribution D at
each iteration and λk,i are relaxation parameters. Fixing
λk,i = 1 for all iterations k and indices i leads to
the standard RK method in which one projects onto
the solution space corresponding to the ithk row of A
at iteration k [SV09]. Choosing relaxation parameters
λk,i 6= 1 can be used to accelerate convergence or
dampen the effect of noise in the linear system [CZT12],
[HN90b], [HN90a].

For consistent systems, RK converges exponentially
in expectation to the solution x? of Ax = b [SV09]. For
inconsistent systems, there exists at least one equation
Ajx = bj that is not satisfied by x?. As a result RK
cannot converge for inconsistent systems, since it will
occasionally project onto the solution space of such an
equation. One can, however, guarantee convergence in
expectation to within a radius of the least-squares solu-
tion, commonly referred to as the convergence horizon
[Nee10], [ZF13], [NT12].

Instead of carrying out updates with respect to a single
row sequentially, we consider a weighted average of
independent updates, which can be carried out in parallel
to improve the efficiency per iteration. Specifically, we



write the averaged RK update

xk+1 = xk −
∑
i∈τk

wi
|τk|

Aix
k − bi
‖Ai‖2

A>i , (4)

where τk is a random sequence of the row indices
taken with replacement and wi represents the weight
corresponding to the ith row. RK with averaging is
detailed in Algorithm 1. If τk is a sequence of length one
and the weights are chosen as wi = 1 for i = 1, . . . ,m,
we recover the standard RK method.

Algorithm 1 Randomized Kaczmarz with Averaging
1: Input A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, weights
w ∈ Rm, maximum iterations K, distribution D, #
of threads |τk|

2: for k = 0, . . . ,K − 1 do
3: τk ← |τk| indices sampled from D
4: Compute δ ←

∑
i∈τk

wi

|τk|
Aix

k−bi
‖Ai‖2 A>i in parallel

5: Update xk+1 ← xk − δ
6: Output xK

C. Contributions

We prove that using averaged parallel updates as
described in Algorithm 1 with uniform weights improves
the guaranteed convergence rate as compared to RK
(Corollary 3) and reduces the convergence horizon for
inconsistent systems. We provide a general convergence
result for Algorithm 1 in Theorem 2.

Our experiments illustrate the improvement in the
convergence rate and convergence horizon as the number
of threads used per iteration increases. The experiments
explore the effects of the relaxation parameter α, the
weights wi and distribution D. We recover the standard
convergence for RK when |τk| = 1 and appropriate
weights and probabilities are chosen [SV09], [Nee10],
[ZF13]. For uniform weights, we relate Algorithm 1
to a more general parallel sketch-and-project method
discussed in [RT17].

D. Related Work

RK is a well-studied method with many variants
[Kac37], [SV09], [Nee10], [ZF13]. We do not provide
an exhaustive review of the related literature, but instead
only remark on a few closely related parallel extensions
of RK.

The CARP algorithm [GG05] distributes rows of A
into blocks. The Kaczmarz method is then applied to
the rows contained within each block and a component-
averaging operator combines the approximations from

each block. While the CARP method is shown to con-
verge for consistent systems and to converge cyclically
for inconsistent systems, no exponential convergence rate
is given.

AsyRK [LWS14] is an asynchronous parallel RK
method that results from applying Hogwild! [NRRW11]
to the least-squares objective. In AsyRK, each thread
chooses a row Ai at random and updates a random
coordinate within the support of that row Ai with a
weighted RK update. AsyRK is shown to have expo-
nential convergence, given conditions on the step size.
Their analysis requires that A is sparse, while we do not
make this restriction here.

RK falls under a more general class of methods often
called sketch-and-project methods [GR15]. For a linear
system Ax = b, sketch-and-project methods iteratively
project onto the solution space of a sketched subsystem
S>Ax− S>b. In particular, RK is a sketch-and-project
method with S> = Ii, where Ii is the ith row of the
identity matrix. Other popular iterative methods such as
coordinate descent can also be framed as sketch-and-
project methods. In [RT17], the authors discuss a more
general version of Algorithm 1 for sketch-and-project
methods with averaging. Their analysis and discussion,
however, focus on consistent systems and require uni-
form weights. We instead focus on the more general case
in which the system may be inconsistent and allow for
more general weights wi.

II. CONVERGENCE RESULTS

For inconsistent systems, RK satisfies the error bound

E
[
‖ek+1‖2

]
≤
(
1− σ2

min(A)

‖A‖2F

)
E
[
‖ek‖2

]
+
‖r?‖2

‖A‖2F
,

(5)

where σmin (A) is the smallest singular value of A,
‖A‖2F =

∑
i,jA

2
ij , and r? is the least-squares residual

[SV09], [Nee10], [ZF13]. Iterating this error bound
yields

E
[
‖ek‖2

]
≤
(
1− σ2

min(A)

‖A‖2F

)k
‖e0‖2 + ‖r?‖2

σ2
min(A)

.

For consistent systems, r? = 0 and this bound guar-
antees exponential convergence in expectation at a rate
1 − σ2

min(A)

‖A‖2F
. For inconsistent systems, this bound only

guarantees exponential convergence in expectation to
within a convergence horizon ‖r?‖2/σ2

min(A).
We derive a convergence result for Algorithm 1 which

is similar to Equation (5) and leads to a better con-
vergence rate and a smaller convergence horizon for
inconsistent systems when using uniform weights. In
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analyzing the convergence, it will be useful to consider
the update to the error at each iteration. Subtracting x?

from both sides of the update rule in Equation (3) and
using the fact that Aie

k − r?i = Aix
k − bi, we derive

the update

ek+1 = ek −
∑
i∈τk

wi
|τk|

Aie
k − r?i
‖Ai‖2

A>i . (6)

To simplify notation, we define the following matrices.

Definition 1. Define the weighted sampling matrix

Mk :=
∑
i∈τk

wi
|τk|

I>i Ii
‖Ai‖2

,

where τk is a sequence of indices sampled independently
from D with replacement and I is the identity matrix.

Using Definition 1, the error update in Equation (6)
can be rewritten as

ek+1 = (I−A>MkA)ek +A>Mkr
?. (7)

Definition 2. Let Diag (d1, d2, . . . , dm) denote the di-
agonal matrix with d1, d2, . . . dm on the diagonal. Define
the normalization matrix

D := Diag (‖A1‖, ‖A2‖, . . . , ‖Am‖)

so that the matrix D−1A has rows with unit norm, the
probability matrix

P := Diag (p1, p2, . . . , pm) ,

where pj = P(i = j) with i ∼ D, and the weight matrix

W := Diag (w1, w2, . . . , wm) .

The convergence analysis additionally relies on the
expectations given in Lemma 1, whose proof can be
found in Appendix I.

Lemma 1. Let Mk,P,W, and D be defined as in
Definitions 1 and 2. Then

E [Mk] = PWD−2

and

E
[
M>kAA>Mk

]
=

1

|τk|
PW2D−2

+

(
1− 1

|τk|

)
PWD−2AA>PWD−2.

A. Coupling of Weights and Probabilities

Note that

lim
|τk|→∞

Mk = E [Mk] .

Therefore, as |τk| → ∞, the RK with averaging update
approaches the deterministic update

xk+1 = (I−A>E [Mk]A)xk +A>E [Mk] b.

Since we want the method to converge to the least-
squares solution, we should require that it have x? as
a fixed point. However, any fixed point x must solve

A>E [Mk]Ax = A>E [Mk] b, (8)

which corresponds to minimizing 1
2‖b − Ax‖2E[Mk]

.
This coincides with the least-squares solution defined in
Equation (2) only if Assumption 1 holds.

Assumption 1. The probability matrix P and weight
matrix W are chosen to satisfy

E [Mk] = PWD−2 ∝ I.

B. General Result

We now state a general convergence result for RK
with averaging in Theorem 2. The proof is given in
Appendix II. Theorem 2 in its general form is difficult to
interpret, so we defer a detailed analysis to Section II-C
in which the assumption of uniform weights simplifies
the bound significantly.

Theorem 2. Suppose P and W of Definition 2 are
chosen such that PWD−2 = α

‖A‖2F
I for relaxation

parameter α > 0. Then the error at each iteration of
Algorithm 1 satisfies

E
[
‖ek+1‖2

]
≤ σmax

((
I− αA>A

‖A‖2F

)2

− α2

|τk|

(
A>A

‖A‖2F

)2
)
‖ek‖2 + α

|τk|
‖rk‖2W
‖A‖2F

,

where ‖·‖2W = 〈·,W·〉 and ‖A‖2F =
∑
i,jA

2
ij .

Here, and for the remainder of the paper, we take the
expectation E

[
‖ek+1‖2

]
conditioned on ek.

As we shall see in Sections II-C and III, the relaxation
parameter α and number of threads |τk| are closely
tied to both the convergence horizon and convergence
rate. The convergence horizon is proportional to α2

|τk| , so
smaller α and larger |τk| lead to a smaller convergence
horizon. Increasing the value of α improves the conver-
gence rate of the algorithm up to a critical point beyond
which further increasing α leads to slower convergence
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rates. Increasing the number of threads |τk| improves the
convergence rate, asymptotically approaching an optimal
rate as |τk| → ∞.

C. Uniform Weights

Suppose W = αI, or equivalently that the weights
are uniform. In this case, the update for each iteration
becomes

xk+1 = xk − α

|τk|
∑
i∈τk

Aix
k − bi
‖Ai‖2

A>i ,

where i ∈ τk are independent samples from D with
pi =

‖Ai‖2
‖A‖2F

. Under these conditions, the expected error
bound of Theorem 2 can be simplified to remove the
dependence on rk. This simplification leads to the more
interpretable error bound given in Corollary 3. In partic-
ular, increasing |τk| leads to both a faster convergence
rate and smaller convergence horizon. If the relaxation
parameter α is chosen to be one and a single row is
selected at each iteration, we arrive at the RK method of
[SV09]. Using uniform weights other than one results in
the relaxed RK method [HN90a], [HN90b].

Corollary 3. Suppose pi = ‖Ai‖2
‖A‖2F

and W = αI.
Then the expected error at each iteration of Algorithm 1
satisfies

E
[
‖ek+1‖2

]
≤ σmax

((
I− αA>A

‖A‖2F

)2

+
α2

|τk|

(
I− A>A

‖A‖2F

)
A>A

‖A‖2F

)
‖ek‖2 + α2‖r?‖2

|τk|‖A‖2F
.

The proof of Corollary 3 follows immediately from
Theorem 2 and can be found in Section III-A.

1) Randomized Kaczmarz: If a single row is chosen
at each iteration, with W = I and pi = ‖Ai‖2

‖A‖2F
,

then Algorithm 1 becomes the version of RK stated in
[SV09]. In this case,

‖rk‖2W = ‖Aek‖2 + ‖r?‖2. (9)

Applying Theorem 2 leads to the following corollary,
which recovers the error bound in Equation (5).

Corollary 4. Suppose |τk| = 1, W = I and pi =
‖Ai‖2
‖A‖2F

.
Then the expected error at each iteration of Algorithm 1
satisfies

E
[
‖ek+1‖2

]
≤ σmax

(
I− A>A

‖A‖2F

)
‖ek‖2 + ‖r

?‖2

‖A‖2F

=

(
1− σ2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r

?‖2

‖A‖2F
.

A proof of Corollary 4 is included in Section III-B.

D. Consistent Systems
For consistent systems, Algorithm 1 converges to

the solution x? exponentially in expectation with the
following guaranteed convergence rate.

Corollary 5. Suppose P and W of Definition 2 are
chosen such that PWD−2 = α

‖A‖2F
I for some constant

α > 0. Then the error at each iteration of Algorithm 1
satisfies

E
[
‖ek+1‖2

]
≤ σmax

((
I− αA>A

‖A‖2F

)2

+
A>

‖A‖F

(
α

|τk|
W − α2

|τk|
AA>

‖A‖2F

)
A

‖A‖F

)
‖ek‖2.

Corollary 5 can be derived from the proof of Theo-
rem 2 with r? = 0.

For consistent systems and using uniform weights,
Algorithm 1 becomes a subcase of the parallel sketch-
and-project method of [RT17], which has a guaranteed
convergence rate of

E
[
‖ek+1‖2

]
≤

1− σ2
min(A)

‖A‖2F
|τk| +

(
1− 1

|τk|

)
σ2
max(A)

 ‖ek‖2,
for relaxation parameter

α? =
1

1
|τk| +

(
1− 1

|τk|

)
σ2
max(A)

‖A‖2F

. (10)

Here, the relaxation parameter α? is chosen to optimize
the convergence rate guarantee. For a large number of
threads, |τk|, the optimal relaxation parameter becomes
α? ≈ ‖A‖2F

σ2
max(A) .

III. EXPERIMENTS

We present several experiments to demonstrate the
convergence of Algorithm 1 under various conditions. In
particular, we study the effects of the number of threads
|τk|, the relaxation parameter α, the weight matrix W,
and the probability matrix P.

A. Procedure
For each experiment, we run 100 independent trials

each starting with the initial iterate x0 = 0 and average
the squared error norms ‖ek‖2 across the trials. We
sample A from 100×10 standard Gaussian matrices and
least-squares solution x? from 10-dimensional standard
Gaussian vectors, normalized so that ‖x?‖ = 1. To
form inconsistent systems, we generate the least-squares
residual r? as a Gaussian vector orthogonal to the range
of A, also normalized so that ‖r?‖ = 1. Finally, b is
computed as r? +Ax?.
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B. The Effect of the Number of Threads

In Figure 1, we see the effects of the number of
threads |τk| on the approximation error of Algorithm 1
for different choices of the weight matrices W and
probability matrices P. In Figures 1a and 1b, W and
P satisfy Assumption 1, while in Figure 1c they do not.

As the number of threads |τk| increases by a factor of
ten, we see a corresponding decrease in the magnitude
of the convergence horizon by approximately the same
factor for Figures 1a and 1b. This result corroborates
what we expect based on Theorem 2 and Corollary 3.
For Figure 1c, we do not see the same consistent
decrease in the magnitude of the convergence horizon.
As |τk| increases, for weight matrices W and probability
matrices P that do not satisfy Assumption 1, the iterates
xk approach a weighted least-squares solution instead of
the desired least-squares solution x? (see Section II-A).

The rate of convergence in Figure 1 also improves as
the number of threads |τk| increases. As |τk| increases,
we see diminishing returns in the convergence rate. We
expect this behavior based on the dependence on 1

|τk| in
Theorem 2 and Corollary 3.

C. The Effect of the Relaxation Parameter α

In Figure 2, we observe the effect on the convergence
rate and convergence horizon as we vary the relaxation
parameter α. From Theorem 2, we expect that the
convergence horizon increases with α and indeed ob-
serve this experimentally. On the other hand, increasing
α leads to improved convergence rates for α not too
large. The squared norms of the errors behave similarly
as α varies for both sets of weights and probabilities
considered, each of which satisfy Assumption 1.

For larger values of the relaxation parameter α, the
convergence rate for Algorithm 1 eventually decreases
and the method can ultimately diverge. This behavior can
be seen in Figure 3, which plots the number of iterations
needed to converge to ‖ek‖2 < 10−10 for consistent
Gaussian systems, various α, and various numbers of
threads |τk|. In terms of the number of iterations re-
quired, we find that there exists an optimal value for
α, which increases with |τk|. Comparing Figure 3a with
Figure 3b, we observe a sharper minima in terms of
α when using weights proportional to the squared row
norms of A as opposed to uniform weights.

For uniform weights, an approximate optimal relax-
ation parameter α? for Algorithm 1 is calculated in
[RT17]. This formula for α? is given in Equation (10).
Table I provides values of α? for different numbers
of threads |τk|. These values are computed using the
matrices from the experiment whose results are shown

(a) Uniform weights wi = 1 and probabilities proportional
to squared row norms pi = ‖Ai‖2

‖A‖2
F

.

(b) Weights proportional to squared row norms wi =

m ‖Ai‖2

‖A‖2
F

and uniform probabilities pi = 1
m

.

(c) Uniform weights wi = 1 and uniform probabilities
pi =

1
m

.

Fig. 1: The effect of the number of threads on the average
squared error norm vs iteration for Algorithm 1 applied
to inconsistent systems. The weights wi and probabilities
pi in (a) and (b) satisfy Assumption 1, while in (c) they
do not.
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(a) Uniform weights wi = α, probabilities proportional to
squared row norms pi = ‖Ai‖2

‖A‖2
F

, and number of threads
|τk| = 10.

(b) Weights proportional to squared row norms wi =

αm ‖Ai‖2

‖A‖2
F

, uniform probabilities pi = 1
m

, and number
of threads |τk| = 10.

Fig. 2: The effect of the relaxation parameter α on the
average squared error norm vs iteration for Algorithm 1
applied to inconsistent systems.

in Figure 3a. Comparing the α? of Table I with the α
that minimize the curves in Figure 3a, we find that these
values generally underestimate the optimal α that we
observe experimentally.

TABLE I: Average optimal α? from Equation (10) for
matrices A used in Figure 3a.

|τk| 5 10 25 100
α? 3.06 4.12 5.21 6.00

IV. CONCLUSION

We prove a general error bound for RK with averaging
given in Algorithm 1 in terms of the number of threads

(a) Uniform weights wi = α and probabilities propor-
tional to squared row norms pi = ‖Ai‖2

‖A‖2
F

.

(b) Weights proportional to squared row norms wi =

αm ‖Ai‖2

‖A‖2
F

and uniform probabilities pi = 1
m

.

Fig. 3: Number of iterations needed for Algorithm 1 to
achieve ‖ek‖2 < 10−10 on consistent systems for various
choices of relaxation parameter α.

|τk| and a relaxation parameter α. We find a natural
coupling between the probability matrix P and the
weight matrix W that leads to a reduced convergence
horizon. We demonstrate that for uniform weights, i.e.
W ∝ I, the rate of convergence and convergence horizon
for Algorithm 1 improve both in theory and practice
as |τk| increases. For consistent systems with uniform
weights, we recover existing convergence results. We
also recover existing convergence results when a single
thread is used, |τk| = 1.
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APPENDIX I
PROOF OF LEMMA 1

E [Mk] = E

[∑
i∈τk

wi
|τk|

I>i Ii
‖Ai‖2

]
= E

[
wi

I>i Ii
‖Ai‖2

]

=

m∑
i=1

piwi
I>i Ii
‖Ai‖2

= PWD−2.

E
[
M>kAA>Mk

]
= |τk|E

[(
wi
|τk|

I>i Ai

‖Ai‖2

)(
wi
|τk|

A>i Ii
‖Ai‖2

)]
+ (|τk|2 − |τk|)E

[
wi
|τk|

I>i Ai

‖Ai‖2

]
E

[
wj
|τk|

A>j Ij

‖Aj‖2

]

=
1

|τk|
E
[
w2
i

I>i Ii
‖Ai‖2

]
+

(
1− 1

|τk|

)
PWD−2AA>PWD−2

=
1

|τk|
PW2D−2

+

(
1− 1

|τk|

)
PWD−2AA>PWD−2.

APPENDIX II
PROOF OF THEOREM 2

We prove Theorem 2 starting from from the error
update in Equation (7). Expanding the squared error
norm,

‖ek+1‖2 = ‖(I−A>MkA)ek +A>Mkr
?‖2

= ‖(I−A>MkA)ek‖2

+ 2〈(I−A>MkA)ek,A>Mkr
?〉

+ ‖A>Mkr
?‖2.

Upon taking expections, the middle term simplifies since
A>E [Mk] r

? = 0 by Assumption 1. Thus,

E
[
‖ek+1‖2

]
= E

[
‖(I−A>MkA)ek‖2

]
− 2E

[
〈A>MkAe

k,A>Mkr
?〉
]

+ E
[
‖A>Mkr

?‖2
]
.

(11)

Making use of Lemma 1 to take the expectation of
the first term in Equation (11),

E
[
‖(I−A>MkA)ek‖2

]
=

〈
ek, (I− 2A>E [Mk]A

+A>E
[
M>kAA>Mk

]
A)ek

〉
=

〈
ek,

(
I− 2α

A>A

‖A‖2F
+

α

|τk|
A>WA

‖A‖2F

+ α2

(
1− 1

|τk|

)(
A>A

‖A‖2F

)2
)
ek
〉

=

〈
ek,

((
I− αA>A

‖A‖2F

)2

+
A>

‖A‖2F

(
α

|τk|
W − α2

|τk|
AA>

‖A‖2F

)
A

)
ek
〉
.
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Since A>r? = 0, for the second term,

2E
[
〈A>MkAe

k,A>Mkr
?〉
]

= 2〈Aek,E
[
M>kAA>Mk

]
r?〉

= 2
α

|τk| ‖A‖2F
〈Aek,Wr?〉.

Similarly, for the last term,

E
[
‖A>Mkr

?‖2
]
=

α

|τk|
‖r?‖2W
‖A‖2F

.

Combining these in Equation (11),

E
[
‖ek+1‖2

]
=

〈
ek,

(
I− αA>A

‖A‖2F

)2

ek
〉

+

〈
ek,

A>

‖A‖2F

(
α

|τk|
W − α2

|τk|
AA>

‖A‖2F

)
Aek

〉
− 2

α

|τk|
〈Aek,Wr?〉
‖A‖2F

+
α

|τk|
‖r?‖2W
‖A‖2F

=

〈
ek,

((
I− αA>A

‖A‖2F

)2

− α2

|τk|

(
A>A

‖A‖2F

)2
)
ek
〉

+
α

|τk|
‖rk‖2W
‖A‖2F

≤ σmax

((
I− αA>A

‖A‖2F

)2

− α2

|τk|

(
A>A

‖A‖2F

)2
)
‖ek‖2

+
α

|τk|
‖rk‖2W
‖A‖2F

.

APPENDIX III
COROLLARY PROOFS

We provide proofs for the corollaries of Section II,
which follow from Theorem 2.

A. Proof of Corollary 3

Suppose pi =
‖Ai‖2
‖A‖2F

and W = αI. From the proof of
Theorem 2,

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− αA>A

‖A‖2F

)2

− α2

|τk|

(
A>A

‖A‖2F

)2
)
ek
〉

+
α

|τk|
‖rk‖2W
‖A‖2F

.

In this case, since A>r? = 0, 〈Aek, r?〉 = 0 and

‖rk‖2W = α‖Aek‖2 + 2α〈Aek, r?〉+ α‖r?‖2

= α〈ek,A>Aek〉+ α‖r?‖2.

Combining the inner products,

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− αA>A

‖A‖2F

)2

+
α2

|τk|

(
I− A>A

‖A‖2F

)
A>A

‖A‖2F

)
ek
〉

+
α2‖r?‖2

|τk|‖A‖2F

≤ σmax

((
I− αA>A

‖A‖2F

)2

+
α2

|τk|

(
I− A>A

‖A‖2F

)
A>A

‖A‖2F

)
‖ek‖2 + α2‖r?‖2

|τk|‖A‖2F
.

B. Proof of Corollary 4

Suppose |τk| = 1, W = I and pi =
‖Ai‖2
‖A‖2F

.

E
[
‖ek+1‖2

]
≤ σmax

(
I− A>A

‖A‖2F

)
‖ek‖2 + ‖r

?‖2

‖A‖2F

=

(
1− σ2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r

?‖2

‖A‖2F
.

From the proof of Theorem 2,

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− A>A

‖A‖2F

)2

−
(
A>A

‖A‖2F

)2
)
ek
〉

+
‖rk‖2

‖A‖2F
.

Decomposing rk,

‖rk‖2 = ‖Aek‖2 + ‖r?‖2

= 〈ek,A>Aek〉+ ‖r?‖2.

Combining the inner products,

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− A>A

‖A‖2F

)2

−
(
A>A

‖A‖2F

)2

+
A>A

‖A‖2F

)
ek
〉
+
‖r?‖2

‖A‖2F

=

〈
ek,

(
I− A>A

‖A‖2F

)
ek
〉
+
‖r?‖2

‖A‖2F

≤ σmax

(
I− A>A

‖A‖2F

)
‖ek‖2 + ‖r

?‖2

‖A‖2F

=

(
1− σ2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r

?‖2

‖A‖2F
.

8


