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Abstract
The randomized Kaczmarz (RK) method is an iterative method for approximating the
least-squares solution of large linear systems of equations. The standard RK method
uses sequential updates, making parallel computation difficult. Here, we study a paral-
lel version ofRKwhere aweighted average of independent updates is used.We analyze
the convergence of RK with averaging and demonstrate its performance empirically.
We show that as the number of threads increases, the rate of convergence improves
and the convergence horizon for inconsistent systems decreases.

Keywords Randomized Kaczmarz · Algebraic reconstruction technique · Parallel
methods · Inconsistent linear systems
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1 Introduction

In computed tomography, image processing, machine learning, and many other fields,
a common problem is that of finding solutions to large linear systems of equations.
Given A ∈ R

m×n and b ∈ R
m , we aim to find x ∈ R

n which solves the linear system
of equations

Ax = b. (1)

We will generally assume the system is overdetermined, with m � n. For simplicity,
we assume throughout that A has full rank so that the solution is unique when it
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exists. However, this assumption can be relaxed by choosing the solution with least-
norm when multiple solutions exist.

When a solution to Eq. (1) exists, we denote the solution by x� and refer to the
problem as consistent. Otherwise, the problem is inconsistent, and x� instead denotes
the least-squares solution

x� def= argmin
x∈Rn

1

2
‖b − Ax‖22.

The least-squares solution can be equivalently written as x� = A†b, where A† is the

Moore-Penrose pseudoinverse of A. We denote the least-squares residual as r� def=
b − Ax�, which is zero for consistent systems.

1.1 Randomized Kaczmarz

RandomizedKaczmarz (RK) is a popular iterativemethod for approximating the least-
squares solution of large, overdetermined linear systems [16,29]. At each iteration,
an equation is chosen at random from the system in Eq. (1) and the current iterate is
projected onto the solution space of that equation. In a relaxed variant of RK, a step
is taken in the direction of this projection with the size of the step depending on a
relaxation parameter.

Let xk be the kth iterate. We use Ai to denote the i th row of A and ‖ · ‖ def= ‖ · ‖2.
The relaxed RK update is given by

xk+1 = xk − αk
Aik x

k − bik
‖Aik‖2

A�
ik , (2)

where ik is sampled from some fixed distribution D at each iteration and αk are
relaxation parameters [4]. Fixing the relaxation parameters αk = 1 for all iterations
k leads to the standard RK method in which one projects the current iterate xk onto
the solution space of the chosen equation Aik x = bik at each iteration [29]. Choosing
relaxation parameters αk �= 1 can be used to accelerate convergence or dampen the
effect of noise in the linear system [4,13,14].

For consistent systems,RKconverges exponentially inmean squared error (MSE) to
the solution x� [29], whichwhenmultiple solutions exist is the least-norm solution [19,
32]. For inconsistent systems, there exists at least one equation A j x = b j that is not
satisfied by x�. As a result RK cannot converge for inconsistent systems, since it will
occasionally project onto the solution space of such an equation. One can, however,
guarantee exponential convergence in MSE to within a radius of the least-squares
solution [21,23,32]. This radius is commonly referred to as the convergence horizon.

1.2 Randomized Kaczmarz with averaging

In order to take advantage of parallel computation and speed up the convergence of
RK,we consider a simple extension of the RKmethod, where at each iterationmultiple
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independent updates are computed in parallel and a weighted average of the updates
is used. Specifically, we write the averaged RK update

xk+1 = xk − 1

q

∑

i∈τk

wi
Ai xk − bi

‖Ai‖2 A�
i , (3)

where τk is a random set of q row indices sampledwith replacement andwi represents
the weight corresponding to the i th row. RKwith averaging is detailed in Algorithm 1.
If τk is a set of size one, i.e. τk = {ik}, and the weights are chosen as wi = 1 for
i = 1, . . . ,m, we recover the standard RK method.

Algorithm 1 Randomized Kaczmarz with Averaging

1: Input A ∈ R
m×n , b ∈ R

m , x0 ∈ R
n , weights w ∈ R

m , number of maximum number of iterations K ,
distribution D, number of threads q

2: for k = 0, . . . , K − 1 do
3: τk ← q indices sampled from D
4: Compute δ ← 1

q
∑

i∈τk
wi

Ai x
k−bi

‖Ai ‖2 A�
i in parallel

5: Update xk+1 ← xk − δ

6: Output xK

1.3 Contributions

We derive a general convergence result for RK with averaging, and identify the con-
ditions required for convergence to the least-squares solution. These conditions guide
the choices of weights and probabilities of row selection, up to a relaxation parameter
α. When q = 1 and appropriate weights and probabilities are chosen, we recover the
standard convergence for RK [21,29,32].

For uniformweights and consistent systems, we relate RKwith averaging to a more
general parallel sketch-and-project method [27]. We also provide an estimate of the
optimal choice for the relaxation parameter α, and compare to the estimated optimal
relaxation parameter for the sketch-and-project method [27]. Through experiments,
we show that our estimate lies closer to the observed result.

1.4 Organization

In Sect. 2, we give a general analysis of the convergence of RK with averaging and
discuss the special casewhere the system is consistent. In Sect. 3,we discuss the special
case where the weights are chosen to be uniform (wi = α for all i) and derive the
optimal relaxation parameter α� for consistent systems. In Sect. 4, we experimentally
explore the effects of the number of threads q, the relaxation parameter α, the weights
wi , and the distribution D on the convergence properties of RK with averaging.
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1.5 Related work

The Kaczmarz algorithm was originally proposed by Kaczmarz [16], though it was
later independently developed by researchers in computed tomography as the Alge-
braic Reconstruction Technique [3,10]. The original Kaczmarz method cycles through
rows in a fixed order; however, this is known to perform poorly for certain orders of the
rows [12]. OtherKaczmarz variants [30] use deterministicmethods to choose the rows,
but their analysis is complicated and convergence results are somewhat unintuitive.

Some randomized control methods were proposed [15], but with no explicit proofs
of convergence until Strohmer and Vershynin’s 2009 paper [29], which proved that
RK converges linearly in MSE, with a rate directly related to geometric properties
of the matrix A. This proof was later extended to inconsistent systems [21], showing
convergence within a convergence horizon of the least-squares solution.

RK is a well-studied method with many variants. We do not provide an exhaustive
review of the related literature [5,7,17,24,32], but instead only remark on some closely
related parallel extensions of RK.

Block Kaczmarz [1,6,8,23,31] randomly selects a block of rows from A at each
iteration and computes its Moore-Penrose pseudoinverse. The pseudoinverse is then
applied to the relevant portion of the current residual and added to the estimate, solv-
ing the least-squares problem only on the selected block of rows. Computing the
pseudoinverse, however, is costly and difficult to parallelize.

The CARP algorithm [9] also distributes rows ofA into blocks. However, instead of
taking the pseudoinverse, the Kaczmarz method is then applied to the rows contained
within each block. Multiple blocks are computed in parallel, and a component-
averaging operator combines the approximations from each block. While CARP is
shown to converge for consistent systems and to converge cyclically for inconsistent
systems, no exponential convergence rate is given.

AsyRK [18] is an asynchronous parallel RK method that results from applying
Hogwild! [26] to the least-squares objective. In AsyRK, each thread chooses a row
Ai at random and updates a random coordinate within the support of that row Ai

with a weighted RK update. AsyRK is shown to have exponential convergence, given
conditions on the step size. Their analysis requires that A is sparse, while we do not
make this restriction.

Recent work of Necoara [20] analyzes a slight generalization of Algorithm 1 under
the name “randomized block Kaczmarz (RBK)”. Rather than sampling indices i.i.d.
as in Algorithm 1, RBK allows for more general sampling strategies such as sampling
from a partition of the rows of A. RBK was shown to converge exponentially in MSE
to the solution of consistent systems of equations. The convergence rate of RBK
shown by Necoara is dependent on the conditioning of the most ill-conditioned block
of the partition when a partition is used and on the most ill-conditioned block of the
entire matrix A when the indices are sampled i.i.d. as in Algorithm 1. Our analysis of
Algorithm 1 does not depend on the most ill-conditioned block of the matrix A and
applies to inconsistent systems as well as consistent systems.

RK falls under a more general class of methods often called sketch-and-project
methods [11]. For a linear system Ax = b, sketch-and-project methods iteratively
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project the current iterate onto the solution space of a sketched subsystemS�Ax−S�b.
In particular, RK is a sketch-and-project method with S� = Ii , where Ii is the i th row
of the identity matrix. Other popular iterative methods such as coordinate descent can
also be framed as sketch-and-project methods. In [27], the authors discuss a more
general version of Algorithm 1 for sketch-and-project methods with averaging. Their
analysis and discussion, however, focus on consistent systems and require uniform
weights. We instead restrict our analysis to RK, but allow inconsistent systems and
general weights wi .

RK can also be interpreted as a subcase of stochastic gradient descent (SGD) [28]
applied to the loss function [22]

F(x) =
m∑

i=1

fi (x) =
m∑

i=1

1

2
(Ai x − bi )

2.

In this context, RK with averaging can be seen as mini-batch SGD [2,25] with impor-
tance sampling, with the update

xk+1 = xk − 1

q

∑

i∈τk

wi

Li
∇ fi (x),

where Li = ‖Ai‖2 is the Lipschitz constant of ∇ fi (x) = (Ai x − bi )A�
i .

2 Convergence of RK with averaging

For inconsistent systems, RK satisfies the error bound

Ek

[
‖ek+1‖2

]
≤
(
1 − σ 2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
, (4)

where ek
def= xk − x� is the error of the kth iterate, σmin (A) is the smallest nonzero

singular value of A, ‖A‖2F = ∑
i, j A

2
i j , r

� def= b − Ax� is the least-squares residual,

andEk [ · ] def= E
[ · | τk−1, . . . , τ0

]
is the expectation conditioned on the samples from

iterations 0, 1, . . . , k − 1 with τk = {ik} for RK [21,32]. Taking the full expectation
on both sides of Eq. (4) and iterating the error bound yields

E

[
‖ek‖2

]
≤
(
1 − σ 2

min(A)

‖A‖2F

)k

‖e0‖2 + ‖r�‖2
σ 2
min(A)

.

For consistent systems the least-squares residual is r� = 0 and this bound guaran-
tees exponential convergence in mean squared error (MSE) at a convergence rate of
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1 − σ 2
min(A)

‖A‖2F
[29]. For inconsistent systems, this bound only guarantees exponential

convergence in MSE to within a convergence horizon ‖r�‖2/σ 2
min(A).

We derive a convergence result for Algorithm 1 which is similar to Eq. (4) and
leads to a better convergence rate and a smaller convergence horizon for inconsistent
systemswhen using uniformweights. To analyze the convergence, we begin by finding
the update to the error at each iteration. Subtracting the exact solution x� from both
sides of the update rule in Eq. (3) and using the fact that Ai ek − r�

i = Ai xk − bi , we
arrive at the error update

ek+1 = ek − 1

q

∑

i∈τk

wi
Ai ek − r�

i

‖Ai‖2 A�
i . (5)

To simplify notation, we define the following matrices.

Definition 1 Define the weighted sampling matrix

Mk
def= 1

q

∑

i∈τk

wi
I�i Ii

‖Ai‖2 ,

where τk is a set of indices sampled independently from D with replacement and I is
the identity matrix.

Using Definition 1, the error update from Eq. (5) can be rewritten as

ek+1 = (I − A�MkA)ek + A�Mkr
�. (6)

Definition 2 Let Diag (d1, d2, . . . , dm) denote the diagonal matrix with d1, d2, . . . dm
on the diagonal. Define the normalization matrix

D def= Diag (‖A1‖, ‖A2‖, . . . , ‖Am‖)

so that the matrix D−1A has rows with unit norm, the probability matrix

P def= Diag (p1, p2, . . . , pm) ,

where p j = P(i = j) with i ∼ D, and the weight matrix

W def= Diag (w1, w2, . . . , wm) .

The convergence analysis additionally relies on the expectations given in Lemma 1,
whose proof can be found in Appendix A.
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Lemma 1 Let the weighted sampling matrix Mk , the normalization matrix D, the
probability matrix P, and the weight matrix W be defined as in Definitions 1 and 2.
Then

Ek [Mk] = PWD−2

and

Ek

[
M�

k AA
�Mk

]
= 1

q
PW2D−2 +

(
1 − 1

q

)
PWD−2AA�PWD−2.

2.1 Coupling of weights and probabilities

Note that the weighted sampling matrix Mk is a sample average, with the number
of samples being the number of threads q. Thus, as the number of threads q goes to
infinity, we have

Mk
q→∞−→ Ei∼D

[
wi

I�i Ii
‖Ai‖2

]
= PWD−2.

Therefore, as we take more and more threads, the averaged RK update of Eq. (3)
approaches the deterministic update

xk+1 = (I − A�PWD−2A)xk + A�PWD−2b.

Likewise, the corresponding error update in Eq. (6) approaches the deterministic
update

ek+1 = (I − A�PWD−2A)ek + A�PWD−2r�.

Since we want the error of the limiting averaged RK method to converge to zero, we
should require that this limiting error update have the zero vector as a fixed point.
Thus, we ask that

0 = A�PWD−2r�

for any least-squares residual r�. This is guaranteed if PWD−2 = βI for some scalar
β. For convenience, we choose to express β as α

‖A‖2F
for some relaxation parameter α.

Assumption 1 The probability matrix P and weight matrix W are chosen to satisfy

PWD−2 = α

‖A‖2F
I.

for some scalar relaxation parameter α > 0.

2.2 General result

We now state a general convergence result for RK with averaging in Theorem 1. The
proof is given in Appendix B. Theorem 1 in its general form is difficult to interpret,
so we defer a detailed analysis to Sect. 3 in which the assumption of uniform weights
(W = αI) simplifies the bound significantly.
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Theorem 1 Let the weighted sampling matrix Mk , the normalization matrix D, the
probability matrix P, and the weight matrix W be defined as in Definitions 1 and 2.
Suppose P and W are chosen such that PWD−2 = α

‖A‖2F
I for relaxation parameter

α > 0 (Assumption 1). Then the error at each iteration of Algorithm 1 satisfies

Ek

[
‖ek+1‖2

]
≤ σmax

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

− α2

q

(
A�A
‖A‖2F

)2
⎞

⎠ ‖ek‖2 + α

q

‖rk‖2W
‖A‖2F

,

where rk
def= b −Axk is the residual of the kth iterate, ‖ · ‖2W = 〈 · ,W · 〉 and ‖A‖2F =∑

i, j A
2
i j .

From Theorem 1, we see that the residual term decreases α
q

‖rk‖2W
‖A‖2F

→ 0 as the

number of threads increases q → ∞. Additionally, the convergence rate of the MSE

E
[‖ek‖2] approaches σ 2

max

(
I − α A�A

‖A‖2F

)
.

The recent work of Necoara [20] points out that

‖rk‖2W ≤
(
max
i∈[m] wi

)
‖rk‖2.

Using this fact, the dependence of Theorem 1 on rk can be loosened to a dependence
on r� since

‖rk‖2 = ‖Aek‖2 + ‖r�‖2.
In this way, results analogous to those in Sect. 3 may be derived without restricting to
uniform weights (W = αI).

2.3 Consistent systems

For consistent systems, Algorithm 1 converges to the solution x� exponentially in
MSE with the following guaranteed convergence rate.

Corollary 1 Let the weighted sampling matrix Mk , the normalization matrix D, the
probability matrix P, and the weight matrix W be defined as in Definitions 1 and 2.
Suppose thatP andW are chosen such thatPWD−2 = α

‖A‖2F
I for relaxation parameter

α > 0 (Assumption 1) and that the system of equations Ax = b is consistent. Then
the error at each iteration of Algorithm 1 satisfies

Ek

[
‖ek+1‖2

]
≤ σmax

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

+ A�

‖A‖F

(
α

q
W − α2

q

AA�

‖A‖2F

)
A

‖A‖F

⎞

⎠ ‖ek‖2.

Corollary 1 can be derived from the proof of Theorem 1 with r� = 0.
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3 Uniformweights

In this section,we simplifyTheorem1under the additional assumption that theweights
are uniform. That is,wi = α for all i . Under this assumption, the convergence horizon
can be determined explicitly, removing the dependence on the current residual rk in
Theorem 1. In this case, the dependence of the convergence rate and convergence
horizon on the relaxation parameter α and number of threads q becomes clear.

When we assume that the weights are uniform, the update from Eq. (3) becomes

xk+1 = xk − α

q

∑

i∈τk

Ai xk − bi
‖Ai‖2 A�

i ,

where i ∈ τk are independent samples from D with pi = ‖Ai‖2
‖A‖2F

. Under these

conditions, the convergence result of Theorem 1 can be simplified to remove the
dependence on rk . This simplification leads to the more interpretable error bound
given in Corollary 2. In particular, increasing the number of threads q leads to both a
faster convergence rate and smaller convergence horizon. If the relaxation parameter
α is chosen as α = 1 and a single row is selected at each iteration, i.e. q = 1, we
arrive at the RK method [29]. Using a relaxation parameter α other than one results
in the relaxed RK method [13,14].

Corollary 2 Suppose the probabilities pi = ‖Ai‖2
‖A‖2F

and the weights wi = α for all i .

Then the error at each iteration of Algorithm 1 satisfies

Ek

[
‖ek+1‖2

]
≤ σmax

⎛

⎝
(
I − α

A�A

‖A‖2F

)2

+ α2

q

(
I − A�A

‖A‖2F

)
A�A

‖A‖2F

⎞

⎠ ‖ek‖2 + α2‖r�‖2
q‖A‖2F

.

The proof of Theorem 2 follows immediately from Theorem 1 and can be found in
Appendix D.1.

Corollary 2 shows that the convergence horizon is proportional to α2

q , so smaller
relaxation parameters α and larger number of threads q lead to a smaller conver-
gence horizon. From the convergence rate term of Corollary 2, we see that increasing
the relaxation parameter α improves the convergence rate of the algorithm up to a
optimal relaxation parameter α� beyond which further increasing α leads to slower
convergence rates. Increasing the number of threads q improves the convergence rate,
asymptotically approaching an optimal rate as q → ∞.

If a single row is chosen at each iteration, with weights wi = 1 and probabilities

pi = ‖Ai‖2
‖A‖2F

, then Algorithm 1 becomes the version of RK stated in [29]. In this case,

‖rk‖2W = ‖Aek‖2 + ‖r�‖2. (7)

Applying Corollary 2 leads to the following result, which recovers the error bound in
Eq. (4).
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Corollary 3 Suppose the number of threads q = 1, the weights wi = 1 for all i , and

the probabilities pi = ‖Ai‖2
‖A‖2F

. Then the error at each iteration of Algorithm 1 satisfies

Ek

[
‖ek+1‖2

]
≤ σmax

(
I − A�A

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
=
(
1 − σ 2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
.

A proof of Corollary 3 is included in Appendix D.2.

3.1 Suggested relaxation parameter˛ for consistent systems with uniform
weights

For consistent systems and using uniform weights,Algorithm 1 becomes a subcase of
the parallel sketch-and-project method described by Richtárik and Takáč [27]. They
suggest a choice for the relaxation parameter

αRT = q

1 + (q − 1) σ 2
max(A)

‖A‖2F

(8)

chosen to optimize their convergence guarantee

Ek

[
‖ek+1‖2

]
≤
(
1 − α

(
2 − α

q

(
1 + (q − 1)

σ 2
max(A)

‖A‖2F

))
σ 2
min(A)

‖A‖2F

)
‖ek‖2. (9)

Analogously, for consistent systems and using uniform weights, we can calculate
the value of α to minimize the bound given in Corollary 2.

Theorem 2 Suppose the probabilities pi = ‖Ai‖2
‖A‖2F

and the weights wi = α. Suppose

also that the system of equationsAx = b is consistent. Then, the relaxation parameter
α which yields the fastest convergence guarantee in Corollary 1 is

α� =
{ q

1+(q−1)smin
, smax − smin ≤ 1

1−q
2q

1+(q−1)(smin+smax)
, smax − smin > 1

1−q

(10)

where smin = σ 2
min(A)

‖A‖2F
and smax = σ 2

max(A)

‖A‖2F
.

The proof of this result can be found in Appendix C.
When a single thread q = 1 is used, we see that our optimal relaxation parameter

is α� = 1. Whereas, when multiple threads q > 1 are used, we see

1 < α� ≤ q
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since
0 < smin ≤ smax ≤ 1.

Additionally, by viewing the condition smax − smin ≤ 1
1−q in terms of the number

of threads, q ≤ 1 + 1
smax−smin

, we see that for low numbers of threads the first form
α� = q

1+(q−1)smin
is used, while for high numbers of threads, the second form α� =

2q
1+(q−1)(smin+smax)

is used.

Note that our relaxation parameter α� differs from the relaxation parameter αRT

suggested by Richtárik and Takáč [27], given in Eq. (8). This is due to the fact that our
convergence rate guarantee is tighter, and thus we expect that our suggested relaxation
parameterα� should be closer to the truly optimal value.We compare these two choices
of the relaxation parameter α experimentally in Sect. 4.3 and show that our suggested
relaxation parameter α� is indeed closer to the true optimal value, especially for large
numbers of threads q.

4 Experiments

We present several experiments to demonstrate the convergence of Algorithm 1 under
various conditions. In particular, we study the effects of the number of threads q, the
relaxation parameter α, the weight matrix W, and the probability matrix P.

4.1 Procedure

For each experiment, we run 100 independent trials each starting with the initial iterate
x0 = 0 and average the squared error norms ‖ek‖2 across the trials to estimate the
MSEE

[‖ek‖2]. Shaded confidence intervals for the 5th and95th percentiles are plotted
when appropriate. For some plots, such as Fig. 3, outlier trials cause E

[‖ek‖2] to lie
outside of the confidence intervals. We sample A from 100 × 10 standard Gaussian
matrices and least-squares solution x� from10-dimensional standardGaussian vectors,
normalized so that ‖x�‖ = 1. To form inconsistent systems, we generate the least-
squares residual r� as a Gaussian vector orthogonal to the range ofA, also normalized
so that ‖r�‖ = 1. Finally, the right side b is computed as r� + Ax�.

4.2 The effect of the number of threads

In Fig. 1, we see the effects of the number of threads q on the approximation error of
Algorithm 1 for different choices of the weight matrices W and probability matrices
P. In Fig. 1a, bW and P satisfy Assumption 1, while in Fig. 1c they do not.

In ,Figs. 1a, b as the number of threads q increases by a factor of ten, we see a
corresponding decrease in themagnitude of the convergence horizon by approximately
the same factor. This result corroborates what we expect based on Theorem 1 and
Corollary 2. For Fig. 1c, we do not see the same consistent decrease in the magnitude
of the convergence horizon. As q increases, for weight matrices W and probability
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(a) Uniform weights wi = 1 and proba-
bilities proportional to squared row norms

pi =
‖Ai‖2

‖A‖2
F
.

(b) Weights proportional to squared row

norms wi = m ‖Ai‖2

‖A‖2
F

and uniform proba-

bilities pi = 1
m
.

(c) Uniform weights wi = 1 and uniform
probabilities pi = 1

m
.

Fig. 1 The effect of the number of threads on theMSEversus iteration forAlgorithm1applied to inconsistent
systems. The weightswi and probabilities pi in a and b satisfy Assumption 1, while in c they do not. Shaded
regions are 5th and 95th percentiles, measured over 100 trials

matrices P that do not satisfy Assumption 1, the iterates xk approach a weighted
least-squares solution instead of the desired least-squares solution x� (see Sect. 2.1).

The rate of convergence in Fig. 1 also improves as the number of threads q increases.
As q increases, we see diminishing returns in the convergence rate. We expect this
behavior based on the dependence on 1

q in Theorem 1 and Corollary 2.

4.3 The effect of the relaxation parameter˛

In Fig. 2, we observe the effect on the convergence rate and convergence horizon as
we vary the relaxation parameter α. From Theorem 1, we expect that the convergence
horizon increases with α and indeed observe this experimentally. The MSE E

[‖ek‖2]
behaves similarly as α varies for both sets of weights and probabilities considered,
each of which satisfy Assumption 1.

For larger values of the relaxation parameter α, the convergence rate for Alo-
gorithm 1 eventually decreases and the method can ultimately diverge. This behavior
can be seen in Fig. 3, which plots the estimatedMSE after 100 iterations for consistent
Gaussian systems, various α, and various numbers of threads q.
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(a) Uniform weightswi = α, probabilities
proportional to squared row norms pi =
‖Ai‖2

‖A‖2
F
, and number of threads q = 10.

(b) Weights proportional to squared row

norms wi = αm ‖Ai‖2

‖A‖2
F
, uniform proba-

bilities pi = 1
m
, and number of threads

q = 10.

Fig. 2 The effect of the relaxation parameter α on the MSE versus iteration for Algorithm 1 applied to
inconsistent systems

Fig. 3 Estimated MSE after 50 iterations of Algorithm 1 on consistent systems with weights wi = α, and

probabilities pi = ‖Ai ‖2
‖A‖2F

for various choices of relaxation parameter α. Shaded regions are the 5th and 95th

percentiles, measured over 100 trials. Diamond markers are estimates of the optimal relaxation parameter
using Theorem 2, and circle markers are estimates using the formula from Richtárik and Takáč [27]

For each value of q, we plot twomarkers on the curve to show the estimated optimal
values ofα. The diamondmarkers are optimal values ofα� computed usingTheorem2,
and the circle markers are optimal values of αRT using Eq. (8) from Richtárik and
Takáč [27]. These values are also contained in Table 1. In terms of the number of
iterations required, we find that the optimal value for α increases with q. Comparing
the αRT values from [27] with the α that minimize the curves in Fig. 3, we find that
these values generally underestimate the optimal α that we observe experimentally.
In comparison, the optimal α� calculated using Theorem 2 are much closer to the
empirically optimal values of α, especially for high q.

We believe this is due to our bound being relatively tighter than Eq. (8). In Fig. 4a,
b, we plot the error bounds produced by Eqs. (8) and (10) after 50 iterations for
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Table 1 Calculated optimal
relaxation parameters α for
matrix A used in Fig. 3 for
various numbers of threads q

q = 5 q = 10 q = 25 q = 100

αRT [Eq. (8)] [27] 3.00 4.00 5.00 5.72

α� (Theorem 2) 4.06 6.57 7.83 8.61

2 4 6 8
α

10−16

10−13

10−10

10−7

10−4

10−1

E
e5

0
2

q = 10
Err Bound (Thm 1)
Err Bound (RT)

(a) q = 10.

2 4 6 8 10 12
α

10−31

10−26

10−21

10−16

10−11

10−6

10−1

E
e5

0
2

q = 100
Err Bound (Thm 1)
Err Bound (RT)

(b) q = 100.

Fig. 4 Estimated MSE after 50 iterations of Algorithm 1 on consistent systems for various choices of
relaxation parameter α. Uniform weights wi = α and probabilities proportional to squared row norms

pi = ‖Ai ‖2
‖A‖2F

. The first error bound is from Theorem 1, while the second is from Eq. 8 [27]

q = 10 and q = 100. We observe that as the number of threads increases, our bound
approaches the empirical result.

5 Conclusion

We prove a general error bound for RK with averaging (Algorithm 1) in terms of the
number of threads q and a relaxation parameter α. We find a natural coupling between
the probabilities pi and the weights wi that leads to a reduced convergence horizon.
We demonstrate that for uniform weights (wi = α for all i), the rate of convergence
and convergence horizon for Algorithm 1 improve both in theory and practice as the
number of threads q increases. Based on the error bound, we also derive an optimal
value for the relaxation parameter α which increases convergence speed, and compare
with existing results.

A Proof of Lemma 1

LetEi [ · ] denoteEi∼D [ · ]. Expanding the definition of the weighted sampling matrix

Mk as a weighted average of the i.i.d. sampling matrices
I�i Ii

‖Ai‖2 , we see that
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Ek [Mk] = Ek

⎡

⎣ 1

q

∑

i∈τk

wi
I�i Ii

‖Ai‖2

⎤

⎦ = Ei

[
wi

I�i Ii
‖Ai‖2

]
=

m∑

i=1

piwi
I�i Ii

‖Ai‖2 = PWD−2.

Likewise, we can compute

Ek

[
M�

k AA
�Mk

]

= Ek

⎡

⎣

⎛

⎝ 1

q

∑

i∈τk

wi
I�i Ai

‖Ai‖2

⎞

⎠

⎛

⎝ 1

q

∑

j∈τk

w j
A�

j I j
‖A j‖2

⎞

⎠

⎤

⎦

= 1

q
Ei

[(
wi

I�i Ai

‖Ai‖2
)(

wi
A�
i Ii

‖Ai‖2
)]

+ (1 − 1

q
)Ei

[
wi

I�i Ai

‖Ai‖2
]
Ei

[
wi

A�
i Ii

‖Ai‖2
]

= 1

q
Ei

[(
wi

I�i Ai

‖Ai‖2
)(

wi
A�
i Ii

‖Ai‖2
)]

+ (1 − 1

q
)Ei

[
wi

I�i Ii
‖Ai‖2

]
AA�

Ei

[
wi

I�i Ii
‖Ai‖2

]

= 1

q
Ei

[
w2
i
I�i Ii

‖Ai‖2
]

+
(
1 − 1

q

)
PWD−2AA�PWD−2

= 1

q
PW2D−2 +

(
1 − 1

q

)
PWD−2AA�PWD−2

by separating the cases where i = j from those where i �= j and utilizing the
independence of the indices sampled in τk .

B Proof of Theorem 1

We now prove Theorem 1 starting from the error update in Eq. (6). Expanding the
squared error norm,

‖ek+1‖2 = ‖(I − A�MkA)ek + A�Mkr
�‖2

= ‖(I − A�MkA)ek‖2 + 2〈(I − A�MkA)ek,A�Mkr
�〉 + ‖A�Mkr

�‖2.
(11)

Under Assumption 1, the expectations in Lemma 1 simplify to

Ek [Mk] = α

‖A‖2F
I

and

Ek

[
M�

k AA
�Mk

]
= α

q

W

‖A‖2F
+ α2

(
1 − 1

q

)
AA�

‖A‖4F
.
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Upon taking expections on both sides of Eq. (11), the middle term simplifies since

Ek

[
〈ek,A�Mkr

�〉
]

= 〈ek,A�
Ek [Mk] r

�〉 = 〈ek, α

‖A‖2F
A�r�〉 = 0.

Thus,

Ek

[
‖ek+1‖2

]

= Ek

[
‖(I − A�MkA)ek‖2

]

︸ ︷︷ ︸
1©

− 2Ek

[
〈A�MkAe

k ,A�Mkr
�〉
]

︸ ︷︷ ︸
1©

+Ek

[
‖A�Mkr

�‖2
]

︸ ︷︷ ︸
1©

. (12)

Making use of Lemma 1 to take the expectation in the first term in Eq. (12),

1© = Ek

[
‖(I − A�MkA)ek‖2

]

= Ek

[〈
ek, (I − A�MkA)�(I − A�MkA)ek

〉]

=
〈
ek, (I − 2A�

Ek [Mk]A + A�
Ek

[
M�

k AA
�Mk

]
A)ek

〉

lem.1=
〈
ek,

⎛

⎝I − 2α
A�A
‖A‖2F

+ α

q

A�WA

‖A‖2F
+ α2

(
1 − 1

q

)(
A�A
‖A‖2F

)2
⎞

⎠ ek
〉

=
〈
ek,

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

+ A�

‖A‖F

(
α

q
W − α2

q

AA�

‖A‖2F

)
A

‖A‖F

⎞

⎠ ek
〉
.

For the second term in Eq. 12,

2© = 2Ek

[
〈A�MkAek,A�Mkr

�〉
]

= 2〈Aek,Ek

[
M�

k AA
�Mk

]
r�〉

lem.1= 2〈Aek,
(

α

q
W + α2

(
1 − 1

q

)
AA�

)
r�〉

A�r�=0= 2
α

q‖A‖2F
〈Aek,Wr�〉.

Similarly, for the last term in Eq. (12),

3© = Ek

[
‖A�Mkr

�‖2
]

= α

q

‖r�‖2W
‖A‖2F

.

123



Randomized Kaczmarz with averaging

Combining these in Eq. (12),

E

[
‖ek+1‖2

]
=
〈
ek,

(
I − α

A�A
‖A‖2F

)2

ek
〉

+
〈
ek,

A�

‖A‖2F

(
α

q
W − α2

q

AA�

‖A‖2F

)
Aek

〉
− 2

α

q

〈Aek,Wr�〉
‖A‖2F

+ α

q

‖r�‖2W
‖A‖2F

=
〈
ek,

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

− α2

q

(
A�A
‖A‖2F

)2
⎞

⎠ ek
〉
+ α

q

‖rk‖2W
‖A‖2F

≤ σmax

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

− α2

q

(
A�A
‖A‖2F

)2
⎞

⎠ ‖ek‖2 + α

q

‖rk‖2W
‖A‖2F

.

C Proof of Theorem 2

Proof We seek to optimize the convergence rate constant fromCorollary 1 when using
uniform weights W = αI,

σmax

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

+ α2

q

(
I − A�A

‖A‖2F

)
A�A
‖A‖2F

⎞

⎠ (13)

with respect to α. To do this, we first simplify from amatrix polynomial to a maximum
over scalar polynomials in α with coefficients based on each singular value of A. We
then show that the maximum occurs when either the minimum or maximum singular
value of A is used. Finally, we derive a condition for which singular value to use, and
determine the optimal α that minimizes the maximum singular value.

Defining Q��Q = A�A
‖A‖2F

as the eigendecomposition, and the polynomial

p(σ )
def= 1 − 2ασ + α2

(
σ

q
+
(
1 − 1

q

)
σ 2

)
,

the convergence rate constant fromEq. (13) can bewritten asσmax

(
p

(
A�A
‖A‖2F

))
. Since

p

(
A�A
‖A‖2F

)
is a polynomial of a symmetric matrix, its singular vectors are the same as

those of its argument, while its corresponding singular values are the polynomial p
applied to the singular values of the original matrix. That is,

p

(
A�A
‖A‖2F

)
= p

(
Q��Q

)
= Q� p (�)Q.
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Thus, the convergence rate constant can be written as

σmax

(
p

(
A�A
‖A‖2F

))
= σmax (p(�)) .

Moreover, we can bound this extremal singular value by the maximum of the
polynomial p over an interval containing the spectrum of �

σmax (p (�)) ≤ max |p (σ )| subject to σ ∈ [smin, smax] .

Here, the singular values of � are bounded from below by smin
def= σ 2

min(A)

‖A‖2F
and above

by smax
def= σ 2

max(A)

‖A‖2F
since� is the diagonal matrix of singular values of A�A

‖A‖2F
. Note that

the polynomial can be factored as p(σ ) = (1 − σα)2 + σα2

q (1 − σ), and is positive

for σ ∈ [0, 1], which contains [smin, smax]. Also, since the coefficient of the σ 2 term of

the polynomial p is α2
(
1 − 1

q

)
which is greater than or equal to zero, the polynomial

is convex in σ on the interval [smin, smax]. Thus, the maximum of p on the interval
[smin, smax] is attained at one of the two endpoints smin, smax and we have the bound

σmax (p (�)) = max (p (smin) , p (smax)) .

To optimize this bound with respect to α, we first find conditions on α such that
p(smin) < p(smax). If smax = smin, this obviously never holds; otherwise, smax > smin
and

p(smin) < p(smax)

1 − 2αsmin + α2
[
smin

q
+
(
1 − 1

q

)
s2min

]
< 1 − 2αsmax + α2

[
smax

q
+
(
1 − 1

q

)
s2max

]

Grouping like terms and cancelling, we get

α

(
2 − α

q

)
(smax − smin) < α2

(
1 − 1

q

)(
s2max − s2min

)

Since α
q > 0, we can divide it from both sides.

(2q − α) (smax − smin) < α (q − 1)
(
s2max − s2min

)

Since smax > smin, we can divide both sides by smax − smin.

2q − α < α (q − 1) (smax + smin)

2q < α (1 + (q − 1) (smax + smin))
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and since the number of threads q ≥ 1, we can divide both sides by 1 +
(q − 1) (smin + smax) to get

α >
2q

1 + (q − 1) (smin + smax)

def= α̂.

Thus,

σmax (p (�)) =
{
p (smax) , α > α̂

p (smin) , α ≤ α̂

For the first term,

∂

∂α
p(smax) = −2smax + 2

(
smax

q
+
(
1 − 1

q

)
s2max

)
α

> −2smax + 2

(
smax

q
+
(
1 − 1

q

)
s2max

)
α̂

since α > α̂ and the coefficient is positive. Factoring 2smax
q from the second term and

substituting for α̂, we get

= −2smax + 2smax

q
(1 + (q − 1) smax) α̂

= −2smax + 2smax

q
(1 + (q − 1) smax)

2q

1 + (1 − q) (smin + smax)

= −2smax + 2smax
2 (1 + (q − 1)smax)

1 + (q − 1)(smax + smin)

= 2smax

[
−1 + 2 (1 + (q − 1)smax)

1 + (q − 1)(smax + smin)

]

= 2smax

[
1 + (q − 1)(smax − smin)

1 + (q − 1)(smax + smin)

]

> 0

since all terms in both numerator and denominator are positive. Thus, the function is
monotonic increasing on α ∈ [̂α,∞), and the minimum is at the lower endpoint, i.e.
α� = α̂.

Similarly, for the second term, α ≤ α̂ and

∂

∂α
p(smin) = −2smin + 2

(
smin

q
+
(
1 − 1

q

)
s2min

)
α

≤ −2smin + 2

(
smin

q
+
(
1 − 1

q

)
s2min

)
α̂

= 2smin

[
1 − (q − 1)(smax − smin)

1 + (q − 1)(smax + smin)

]
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If

1 − (q − 1)(smax − smin) < 0, (14)

this function is monotonic decreasing on α ∈ (−∞, α�], and the minimum is at the
upper endpoint i.e. α = α�. Otherwise, since p(smin) is quadratic in α with positive
leading coefficient, the minimum occurs at the critical point, so we set the derivative
to 0 and solve for α�

∂

∂α
p(smin) = −2smin + 2

(
smin

q
+
(
1 − 1

q

)
s2min

)
α�

= −2smin + 2smin

q
(1 + (q − 1) smin) α�

= 0

2smin

q
(1 + (q − 1) smin) α� = 2smin

α� = q

1 + (q − 1)smin

D Corollary Proofs

We provide proofs for the corollaries of Sect. 2, which follow from Theorem 1.

D.1 Proof of Corollary 2

Suppose pi = ‖Ai‖2
‖A‖2F

and W = αI. From the proof of Theorem 1,

Ek

[
‖ek+1‖2

]
=
〈
ek,

⎛

⎝
(
I − α

A�A
‖A‖2F

)2

− α2

q

(
A�A
‖A‖2F

)2
⎞

⎠ ek
〉
+ α

q

‖rk‖2W
‖A‖2F

.

In this case, since A�r� = 0, 〈Aek, r�〉 = 0 and

‖rk‖2W = α‖Aek‖2 + 2α〈Aek, r�〉 + α‖r�‖2
= α〈ek,A�Aek〉 + α‖r�‖2.

Combining the inner products,

Ek

[
‖ek+1‖2

]
=
〈
ek ,

⎛

⎝
(
I − α

A�A

‖A‖2F

)2

+ α2

q

(
I − A�A

‖A‖2F

)
A�A

‖A‖2F

⎞

⎠ ek
〉
+ α2‖r�‖2

q‖A‖2F
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≤ σmax

⎛

⎝
(
I − α

A�A

‖A‖2F

)2

+ α2

q

(
I − A�A

‖A‖2F

)
A�A

‖A‖2F

⎞

⎠ ‖ek‖2 + α2‖r�‖2
q‖A‖2F

.

D.2 Proof of Corollary 3

Suppose q = 1, W = I and pi = ‖Ai‖2
‖A‖2F

.

Ek

[
‖ek+1‖2

]
≤ σmax

(
I − A�A

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
=
(
1 − σ 2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
.

From the proof of Theorem 1,

Ek

[
‖ek+1‖2

]
=
〈
ek,

⎛

⎝
(
I − A�A

‖A‖2F

)2

−
(
A�A
‖A‖2F

)2
⎞

⎠ ek
〉
+ ‖rk‖2

‖A‖2F
.

Decomposing rk ,

‖rk‖2 = ‖Aek‖2 + ‖r�‖2
= 〈ek,A�Aek〉 + ‖r�‖2.

Combining the inner products,

Ek

[
‖ek+1‖2

]
=
〈
ek,

⎛

⎝
(
I − A�A

‖A‖2F

)2

−
(
A�A
‖A‖2F

)2

+ A�A
‖A‖2F

⎞

⎠ ek
〉
+ ‖r�‖2

‖A‖2F

=
〈
ek,

(
I − A�A

‖A‖2F

)
ek
〉
+ ‖r�‖2

‖A‖2F
≤ σmax

(
I − A�A

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
=
(
1 − σ 2

min(A)

‖A‖2F

)
‖ek‖2 + ‖r�‖2

‖A‖2F
.
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